Violin plot of p-values for quantiles of q

corr_plot(p, q, ylim = c(0, 1.5))

Arguments

p

p values for principal trait (vector of length n)

q

auxiliary data values (vector of length n)

ylim

y-axis limits (-log10)

Value

ggplot object

Details

Can be used to investigate the relationship between p and q

If this shows a non-monotonic relationship then the cFDR framework should not be used

(because e.g. cFDR cannot simultaneously shrink v-values for high p and low p)

Examples

# In this example, we generate some p-values (representing GWAS p-values) # and some arbitrary auxiliary data values (e.g. representing functional genomic data). # We use the corr_plot() function to visualise the relationship between p and q. # generate p set.seed(1) n <- 1000 n1p <- 50 zp <- c(rnorm(n1p, sd=5), rnorm(n-n1p, sd=1)) p <- 2*pnorm(-abs(zp)) # generate q mixture_comp1 <- function(x) rnorm(x, mean = -0.5, sd = 0.5) mixture_comp2 <- function(x) rnorm(x, mean = 2, sd = 1) q <- c(mixture_comp1(n1p), mixture_comp2(n-n1p)) corr_plot(p, q)